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Entropy and entropy production in simple stochastic models
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Entropy and its production rate play important roles in characterizing nonequilibrium states, which appear in
connection with, e.g., stationary transport of matter or heat, a glass transition, and simulated annealing. We
derive useful relations between the statistical and the thermodynamic entropies and also derive a Fokker-
Planck equation to study fluctuations in the thermodynamic entropy. As simple test systems, we consider
Brownian motion in a double-well and a periodic potentj&l1063-651X98)10702-X]

PACS numbg(s): 05.40+j, 05.70.Jk, 05.60tw

I. INTRODUCTION II. STOCHASTIC DYNAMICS AND ENTROPY

We consider dynamics of a state varialste (x,...X,)

Recently a lot of attention has been paid to simple sto- overned by the Langevin equation

chastic models which are supposed to approximately repreg—
sent complicated many-body systems. Here the main theoret- dx/dt=— VV(x)+f(t), (1)
ical interest is centered around the interplay among
nonlinearity, noise, and an external perturbation. For exwith the following fluctuation-dissipation relation:
ample, the so-called stochastic resonance is mainly studied
based on models of the Brownian motion in a double-well (fi(OF (1)) =2T (1) 8(t—t") & ;. 2
potential under the action of time-periodic foridg2]. Simi- i
larly, a thermal ratchet is studied with use of a simple stoW& note that the temperature of the syst@ift) is here
chastic model in which #nonsymmetrit potential field os- allqwed to be time dependent. The I_:okker-PIanck equation,
cillates in time or nonthermal noise of a non-Markov natureWhich corresponds to Eqél) and(2), is
is exerted on a Brownian particl8,4]. Also of interest is the ) _
two-state or double-well model for glass transition in which IPOGO/=V - [pVV+T(O)Vp]. &)
the temperature of the system is varied in time to realiz
nonequilibrium states, whose entropiésth thermal and
statistical are the target of theoretical investigatidis6].

In this paper we discuss entropy and entropy production
in nonequilibrium(stationary states using simple stochastic Si(t)= —f dx p(x;t)In p(x;t), (4)
models, which allow detailed numerical analysis. Further-
more, we formulatgtherma) entropy fluctuations in terms
of a Fokker-Planck equation, which can give rise to useful E(t):f dx p(x;t)V(x)=(V). (5
information on stochastic dynamics. Our unified entropy ap-
proach would shed some light on rather general stochast
models including those mentioned above.

In Sec. Il we derive a simple inequality, which may be

®he statistical entrop$g(t) and the internal energy(t) are
defined as follows:

With use of Eq.(3) together with partial integration, we no-
tice immediately that

interpreted either as monotonic decreéesdime) of the free dSu(t)/dt=T(((V In p)2)—(V2V 6
energy of the system or the distinction between the thermal (b (O 5= ) ®)
and statistical entropies. As applications of the results, we dE)/dt=—((VV)2)+ T(H)(V2V) @

consider two types of Brownian motion. First in Sec. lll a

Brownian particle is put in a space-periodic potential which¢om which we derive the inequality of the form

is inclined due to a uniform field. Here our main concern is

with nonequilibrium states with stationary mass transport. In - dg(t)/dt—T(t)dSy(t)/dt=—((VV+TV In p)?)=<0.
Sec. IV Brownian dynamics in a double-well potential is (8)
studied, with temperature of the system varied in time to

produce glasslike nonequilibrium states. In Sec. V we conEquation(8) leads to two important relations, Eq4.2) and
clude this paper with discussions on entropy fluctuati@s (13) below. To derive from Eq(8) the inequality(12), ob-
and on “mechanical” reservoirs often used to investigateserved in Ref[5(a)], we note that the heatQ absorbed by
nonequilibrium stationary statdd,8]. The Appendix con- the system from the reservoir is given 8Q(t) =dE(t) [see
tains some results for stochastic dynamics governed by discussions below Ed12)]. Then the inequality8) is ex-
master equation. pressed as

1063-651X/98/5{2)/14037)/$15.00 57 1403 © 1998 The American Physical Society



1404 MUNAKATA, IGARASHI, AND SHIOTANI 57

[1/T(t)]dQ(t) =d Sy(t). (9)  The potentiaV,(#6) is periodicV(60) =V,(6+27) andF*
denotes the constant external force. The Fokker-Planck equa-
Here let us consider an experiment in which the system ision corresponding to Eq14) reads
cooled or heated. In a cooling process fram(t=t;) to

T(t=t;), we integrate Eq.9) in time fromt; to t;, to obtain ap(6,t)/ gt=— (&/ae)[(FeX—dvp/d 0)p—To(d/36)p]

T =-— .
STI=SuTo+ | 'damw=s(my, o (9/2013(6.0 (19
" The stationary statéSS with a constant flowlsgis obtained
where the thermodynamic entroﬁj] is defined with use of by solving the equation R¥*—dV/d@)pss— To(d/d6)pss
the heat absorbed from the reservoir in a cooling process and Jss to be
we preferred temperature to time in writing Ed@.0). It is
noted that if atT=T,, the system relaxes to an equilibrium L ,
state rapidly due to strong thermal fluctuatio®g({T,) on Psd H)ZG(B)((_JSS/TO) fo dg'/G(6')+C
the right-hand side of Eq10) is the entropy of an equilib-
rium state and may be equal $,(Ty,). Similarly by heating
the system fronfl,| to T,,, we have

. (A7)

where G(0)=expf¢{d¢'[F*—dV,(8')/d¢’]/Ty. Two un-
known constantsC andJgg, are determined from the nor-

Th malization [2"df pss=1 and the periodicity psq0)
Sst(T|)$Sst(Th)—JT dQ/T(H)=S|(T)). (1)  =pg42m) to obtain
|

Combining Egs(10) and (11) we are led to the desired in- Jed/ To= —(G(Zﬂ') zwdaG(a)/[l—G(Z’ﬂ)]
0

equality

| = = 1 T T -1
S[h(TI)\SSt(TI) S[h(TI) (12) % 02 d9/G(0)+ 02 dﬁG(ﬁ)joodG'/G(ﬁ')) .

The physical situation expressed by Etp) is nicely repre-
sented by Fig. 1 of Ref5(a)]. In passing we note that if we
generalize the Langevin dynamics by including momenta
=dx/dt, we only need to modify Eq(5) as E(t)=(V
+(p?/2)) to arrive at Eq.(8). This is intuitively understood
as follows: By including momentum variabl@s(with mass
m= 1) we havedx/dt=p, dp/dt=—yp—VV+f whereyis

We takeV,(0)=[1+cos(¥)))2 and T(=0.5. In Fig. 1 is
plotted ps{ 6) for some values of the external for&€* to-
gether with the equilibrium state<exy —V,(6)/T,]) for F
=0. It is observed that the nonequilibrium SS distribution
becomes less sharp & becomes larger. The SS current

. . : ; o
the friction constant. The work done on the system by aJss Wins out to be a simple increasing function et as

reservoir is expressed as- fp-+f) - dx=(dp/dt+VV).dx  expected. _ _
=d(p?2+V). In the largey limit we setdp/dt=0, which is Next we consider how our system approaches the station-

; _ _ _ tatepsq #). First we note that the potentisllin Eq. (5),
equivalent to Eq(1) for y=1, to havedQ=d(V)=dE. ary s S ) L
The second interpretation of E¢8) is for the case of Which takes the form/=V,(¢)—F®, is not periodic ing

constant temperatufB(t) =T,. Defining the free energy by and we must considef in the extended range < §<c
F(t)=E(t)— T,Sy(t) we notice from Eq.(8) that it de- when we calculate the enerdg(t)_=<v>. However, reflect-
creases monotonically in time ing the fact that we used partial integration to derive 3.

it contains onlyVV and the argument of p(#6,t) in Eq. (8)

dF(1)/dt<0, (13 is restricted to the range96<2. Thus it holds that
until the equilibrium state, represented by,(x) dF(t)/dt=dE(t)/dt—TodSy(t)/dt— — 27IsF**
cexg —V(x)/Ty] is realized. Of course this distribution
function should be normalizable if it is to be useful. Thus we (t—). (18)

cannot use it for the problem in which a constant field is

exerted on a system and some stationary transport process31ce Sg(t) goes to a constant [dfpsdnpssast—o, we

prevailing (see Sec. Ill. For completeness we consider sto- See from Eq(18) that the energy goes te due to circular

chastic processes governed by a master equation and derig@tion of the Brownian particle in the direction Bf*.

an inequality similar to Eq(8) in the Appendix. In terms of the thermal entropg Sy, (t) =dE(t)/Ty, this
fact is expressed as

I1l. MASS TRANSPORT IN A PERIODIC POTENTIAL
. . . . . . o=—dSy(t)/dt—=2mIsF Ty (t—), (19
In this section we consider one-dimensional Brownian

motion on a unit circle described by the Langevin equation, . ore . denotes the entropy productidnate, since the

do/dt= —dV,(6)/do+ Fo+f(t), (14) Brownian p.arti(.:Ie gives energy2sd** per unit time to
the reservoir with temperaturg, .
where the random forc(t) satisfies the relation In order to calculate and dF(t)/dt one must obtain

p(#;t) by solving the Smoluchowski equatid¢t6) numeri-
(f(O)f(t"))=2Ty8(t—t"). (15 cally. For this purpose we employ an implicit scheme, which
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pss(9)

FIG. 1. Stationary distributiopsq 8) for F¥*=0 (equilibrium) (denoted by a dashed line with), 0.5 (denoted by a solid lineand 1.0
(denoted by<¢) for Ty=0.5.

we require to conserve the probability to at least 30It x2(x—2)? (x<1)

turns out that this conservation condition is achieved so long VOO=| o x—2)2+0.6x-1)3 (x=1) 29

as the constarifyAt/A 62 is made smaller than 0.1 whete

and A¢ are the time and space increments in our differencavhich is shown in Fig. 3.

shemg9]. In Fig. 2 we depicfTyo and —dF(t)/dt for F&* Here our interest is centered around the nonequilibrium
=0.5, where the initial conditiop(#;t=0) is taken to be distribution p(x;t) and two kinds of entropie§(t) and
uniform on 0< #< 2. The rates is seen to decrease mono- Ss(t) associated with time variation of temperatdrét) in

tonically and achieves the SS of minimum entropy producEQg. (3). We consider the following experiment: The system
is kept in equilibrium at temperaturg,(=1) for t<0, thus

tion.
p(x,t<0)xcexg —V(X)/Ty]. In the cooling process Ot
IV. BROWNIAN MOTION IN A DOUBLE-WELL <tm, T(t) is chosen to be a stepwise function, which
POTENTIAL changes bysT(=0.01) at timet; (i=1,2,... M—1) with

L . . t;=0, T(t;<t<t; . 1)=Ty—i6T. The timet; is determined
As an application of the formalism developed in Sec. I, rom the relationf(t, , ;) =To—i 5T with f(t) given by
we next consider Langevin dynamics in a one-dimensionaﬁ '
double-well potential f(t)=To/[1+rt]. (21

0.8 T T T T T T T T T

Too(t), —dF(t)/dt

0.1 1 1

FIG. 2. Tyo(t) (denoted by<) and —dF(t)/dt (denoted by a solid linefor F&*=0.5.
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FIG. 3. Double-well potential Eq20).

Ther in Eq. (21) controls the coolingor heating rate. In the
heating process$y,,<t<<o we proceed precisely in the re-
versed way coming back t©, at timet=2ty,. Fort>2ty,
the system is kept &t=T,, relaxing to an equilibrium state
in which it was at time<0. The Smoluchowski equatidB)
with the potential Eq(20) is solved numerically with a simi-
lar difference sheme as used in Sec. lIl.

In Fig. 4 we depicp(x,t;) withi=1 and 2V for the case
M =91 and the rate=0.5. Both distribution functions cor-
respond to temperatuiie=T,, with p(x;t;) representing the

first (second peak in the nonequilibrium distribution
p(x:tyy). Of course this tendency becomes weaker as-
comes small and almost indiscernible fer 0.01 in the scale
of this figure.

In Fig. 5 we showS}(Ty), Si(Tu), and Sg(Ty,) for
Ty=To—0.03[1=1,2,...,18. For calculation of these
three entropies for each,,, we consider the temperature
loop Ty— Ty— T, mentioned before. The inequalif}?) is
clearly confirmed from Fig. 5. We note that in the heating
process the contribution tﬁIh(TM) from the heat absorbed

equilibrium one and the difference shows the nonequilibriumpy the system during equilibration process t>t,), should

effects. In the cooling process €d<t,,) the weight around
the first (secondl peakx=0 (x=1.7) increasegdecreases
and in the heating procesd,(<t<t,y) the distribution

be included. The thermal entropy as depicted in Fig. 5 may
be called an average thermal entropy because there are many
thermal processes corresponding to each realization of the

tends to recover its original shape. However, since the sygandom processei{t) in Eqg. (1) andS;, is an average over

tem is out of equilibrium due to the finite rate the recovery
is not enough and we observe mdlesg weight around the

these realizations. In Sec. V fluctuations of thermal entropy
are formulated.

08 T T

—~
-+
8
~—
ISY

FIG. 4. Equilibrium and nonequilibrium distributiong(x;t;) (denoted by a solid lineand p(x;t,y) (denoted by< ) for M=91.
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FIG. 5. SIh(TM) (denoted by a dotted Iit)estih(TM) (denoted by a line withd ), andSy(Ty,) (denoted by a line witht) for Ty =T,
-0.08 [I=1,2,...,18.

Here we note that temporal variation of temperaflie) Hoover numerically studied the system E¢®2)—(24) and
was recently discussed by Reimaeinal.[10] in relation to  their results are summarized as follo{id.
directed Brownian motion, based on the one-dimensional (a) The external forcé® produces mass currep(>0)
version of Eqs(1) and(2). Two differences from our model where the bar means time average.
in this section are first(t) is cyclic with afinite period and (o) The expansion rate of phase spade=dq/dq
secondly the periodic potential(x) has broken symmetry +dp/dp+dnldn=— 5 takes negative value on average or
(ratchet[3,4]) in Ref. [10]. Although the general inequality A=—7<0, meaning that the support of the distribution
(8), the main result in this paper, has no direct relevance tgunction p(p,q, 7;t) shrinks in time and it reduces to a frac-
directed diffusion, our numerical approach based on thea| set in the limitt—o. From the definition(4) and Egs.
Smoluchowski equation as developed in Secs. Il and 1V i522)—(24),
expected to yield useful information not only on stationary
particle current but also on transient behaviors before estab-
lishing the stationary current.

asy(v/dt=— [ dp g dr p(p.6, 0 7=—(n).

V. SOME REMARKS (25

In this paper we derive an inequality E(B), based on

which two types of Brownian motion are studigl]. Oneis  £rom the above the statistical entropy behavesSgs) ~
related to a nonequilibrium stationary state, especially an en;ﬁ ast— .

tropy productionaz'—dsh/dt assqciated with mass trans- (c) The heat transferred to the system,q) from the
por't in an external .f|eld. The other is the entrqpy of nonequixeservoir is expressed asyp dq [see the lines just below
librium states, which are produced by cooling or heatlngEq_(lz)], which is rewritten aﬂ[p2/2+vp(q)_Fexq], thus
pro(gesse?.th tivati f tudv of the stai leading to our resuldQ=dE derived in Sec. II. If we take
¢ tneSo ”e .m? va |otns totrhoutr shu %’ of the s_amngrytime average of T,dS,/dt=dQ/dt=dE/dt, we have
state ( €C. ) is 0 contrast thestochasticreservoir use TodSp/dt——F%p [cf. Eq. (19)]. This was numerically
here with the reversible anechanicateservoir of the Nose-

S found to be equal te- #T,.

Hoover or Gauss typgl2], because the no_nequmbrlum sta- As for the thermal entropy,(t) the stochastic and me-
tionary states produced by these reservoirs gather ConS'deéﬁanical reservoirs give the same asymptotic behavior as
able interes{7,8]. We take a particle in a periodic potential

) . t—oo. However, for the statistical entropy, we ha8g(t)
Vp(a) in contact with the Nose-Hoover reservgif]. The ~_7T as tow for the mechanical reservoir and
system is expressed by

dS(t)/dt—0 ast— o for the stochastic reservoir. The most

dg/dt=p, (22) subtle point about the mechanical reservoir is that the time
averagen becomes positive and at the moment we do not
dp/dt=—dV,(q)/dg— np+F, (23)  know where this result comes from. Intuitively this may
come from the fact that the stochastic reservoir may be re-
dy/dt=(p¥Ty—1), (24) garded as a system with infinitely many degrees of freedom,

while the mechanical one consists of at most a few degrees
where 7 denotes a friction coefficient/,(q), To, andF®  of freedom. However, it must be noted tipatlefined by Eq.
have the same meaning as in Efj4). Holian, Posch, and (22) should be expressed ps- §p for larget and 5p should
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be related to temperatu&, in Eq. (24). This point is also  —V(x,)]/To+S,. It is easily confirmed thatpéq(x,sth)

important for the Gauss reservgB] and is currently under =PedX) 8{S—[V(X) = V(X0) 1/ To— So} gives one station-

study. _ _ _ ary solution to Eq(29). More generally, introducing a dis-
Thermal entropy defined in Sec. Il is an average over afipution p(S,) for the initial entropy value, pgq

ensemble of many sample trajectories and its fluctuations can fd Sopl P(So) = Ped ) P{Sin—[V(X) — V(o) I/ To} also

. . . . . . e
give useful information on relaxational prppertles, espemallygives a s'?ationary solution to E(R9). These arguments give
when the temperature of the systéft) is controlled as  aia) support to the validity of Eq29). Numerical studies

discussed in Ref5] for the case of thédiscretg two-level o, Eq (29) for a time-dependent temperature are in progress
system. We now formulate entropy fluctuations based on thg 4 will be reported elsewhere.

Fokker-Planck equation for the model of continuous vari-
ablesx. First we rewrite Eq(1) as APPENDIX: ENTROPY IN MASTER EQUATION

dx(t)=—VV(x)dt+ 2T(t)dW, (26) DYNAMICS

) ) We consider the master equation for the probability den-
where W(t) = (W,(t),...,W,(t)) denotes then-dimensional sity p(x;t),

Wiener proces$13], which satisfies

(Wi(1))=0 and (dW()dWi(t))=dts; ;. (27 ap(X:t)/at=f dy[W(y—x)p(y;t) = W(x—y)p(x;t)]
The heat absorbed from the reservaiQ(t)=V(x+ dx)
—V(x) [14] is calculated from Eq(26) as EJ dy[A—B], (A1)
dQ(t)=[—(VV)*+T(t)V?V]dt+ VZT(I)VV'dW.(28) where we assume the detailed balance relation

. - W(X—y)/W(y—x)=expg[V(X) = V(Y I/T(D}. (A2)
whereVV- W is interpreted as an Ito-type stochastic integral o .
[13]. From the definitiord S;,=dQ/T(t) [14] and taking into ~ With use of definitiong4) and(5), we readily see that
account the relations{(dS)?)/dt=2(VV)?/T(t) and B
(dx dSy)/dt=2VV, we have the Fokker-Planck equation AVH(D/dt=T()dS(t)/dt

for the distribution functi ,Sinit),
or the distribution functiorp(x,Si,;t) :f dxf dy[A—BILVOO -+ T(OIn pOC].

(A3)

aplot=V -[pVV]—AdpldSy+TV?p+2V-a(pVV)/3S

+[(VV)2IT]%pl 9S4, (29
By interchanging« andy in the integrand of Eq(29) we see
whereA=A(x;t)=V2V—(VV)?/T(t). It is noted that inte- that
gration of EQ.(29) over Sy, yields Eq.(3) as it should. If we

solve Eq.(29) under the initial condition d(V)(t)/dt—T(t)dSy(t)/dt

P(X, St =0) = 8(X—Xo) (St~ Sp), (30 :[T(t)/zjf dxf dy[A—B]In(B/A)<0.
P(Si;t)=Jdx p(x,Sp;t) gives us thgthermodynamigen- (Ad)
tropy distribution at timet due to noise and temperature
variationT(t). Following the same argument as before we see that the rela-

A stationary solution to Eq(29) for the caseT(t)=T, tion (12) also holds for the master equation dynamics. It goes
can be found if one notes that the distribution ®f  without saying that the state variabdewhich is dealt here as
approaches pedXx)cexd—V(x)/To] and Sp=[V(X) continuous, can be discrete.
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