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Entropy and entropy production in simple stochastic models
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Entropy and its production rate play important roles in characterizing nonequilibrium states, which appear in
connection with, e.g., stationary transport of matter or heat, a glass transition, and simulated annealing. We
derive useful relations between the statistical and the thermodynamic entropies and also derive a Fokker-
Planck equation to study fluctuations in the thermodynamic entropy. As simple test systems, we consider
Brownian motion in a double-well and a periodic potential.@S1063-651X~98!10702-X#

PACS number~s!: 05.40.1j, 05.70.Jk, 05.60.1w
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I. INTRODUCTION

Recently a lot of attention has been paid to simple s
chastic models which are supposed to approximately re
sent complicated many-body systems. Here the main theo
ical interest is centered around the interplay amo
nonlinearity, noise, and an external perturbation. For
ample, the so-called stochastic resonance is mainly stu
based on models of the Brownian motion in a double-w
potential under the action of time-periodic force@1,2#. Simi-
larly, a thermal ratchet is studied with use of a simple s
chastic model in which a~nonsymmetric! potential field os-
cillates in time or nonthermal noise of a non-Markov natu
is exerted on a Brownian particle@3,4#. Also of interest is the
two-state or double-well model for glass transition in whi
the temperature of the system is varied in time to rea
nonequilibrium states, whose entropies~both thermal and
statistical! are the target of theoretical investigations@5,6#.

In this paper we discuss entropy and entropy produc
in nonequilibrium~stationary! states using simple stochast
models, which allow detailed numerical analysis. Furth
more, we formulate~thermal! entropy fluctuations in terms
of a Fokker-Planck equation, which can give rise to use
information on stochastic dynamics. Our unified entropy
proach would shed some light on rather general stocha
models including those mentioned above.

In Sec. II we derive a simple inequality, which may b
interpreted either as monotonic decrease~in time! of the free
energy of the system or the distinction between the ther
and statistical entropies. As applications of the results,
consider two types of Brownian motion. First in Sec. III
Brownian particle is put in a space-periodic potential wh
is inclined due to a uniform field. Here our main concern
with nonequilibrium states with stationary mass transport
Sec. IV Brownian dynamics in a double-well potential
studied, with temperature of the system varied in time
produce glasslike nonequilibrium states. In Sec. V we c
clude this paper with discussions on entropy fluctuations@5#
and on ‘‘mechanical’’ reservoirs often used to investiga
nonequilibrium stationary states@7,8#. The Appendix con-
tains some results for stochastic dynamics governed b
master equation.
571063-651X/98/57~2!/1403~7!/$15.00
-
e-
et-
g
-

ed
ll

-

e

n

-

l
-
tic

al
e

n

o
-

e

a

II. STOCHASTIC DYNAMICS AND ENTROPY

We consider dynamics of a state variablex5(x1 ,...,xn)
governed by the Langevin equation

dx/dt52“V~x!1f~ t !, ~1!

with the following fluctuation-dissipation relation:

^ f i~ t ! f j~ t8!&52T~ t !d~ t2t8!d i , j . ~2!

We note that the temperature of the systemT(t) is here
allowed to be time dependent. The Fokker-Planck equat
which corresponds to Eqs.~1! and ~2!, is

]p~x;t !/]t5“•@p“V1T~ t !“p#. ~3!

The statistical entropySst(t) and the internal energyE(t) are
defined as follows:

Sst~ t !52E dx p~x;t !ln p~x;t !, ~4!

E~ t !5E dx p~x;t !V~x![^V&. ~5!

With use of Eq.~3! together with partial integration, we no
tice immediately that

dSst~ t !/dt5T~ t !^~“ ln p!2&2^¹2V&, ~6!

dE~ t !/dt52^~“V!2&1T~ t !^¹2V&, ~7!

from which we derive the inequality of the form

dE~ t !/dt2T~ t !dSst~ t !/dt52^~“V1T“ ln p!2&<0.
~8!

Equation~8! leads to two important relations, Eqs.~12! and
~13! below. To derive from Eq.~8! the inequality~12!, ob-
served in Ref.@5~a!#, we note that the heatdQ absorbed by
the system from the reservoir is given bydQ(t)5dE(t) @see
discussions below Eq.~12!#. Then the inequality~8! is ex-
pressed as
1403 © 1998 The American Physical Society
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1404 57MUNAKATA, IGARASHI, AND SHIOTANI
@1/T~ t !#dQ~ t !<dSst~ t !. ~9!

Here let us consider an experiment in which the system
cooled or heated. In a cooling process fromTh(t5t i) to
Tl(t5t f), we integrate Eq.~9! in time from t i to t f , to obtain

Sth
↓ ~Tl ![Sst~Th!1E

Th

Tl
dQ/T~ t !<Sst~Tl !, ~10!

where the thermodynamic entropySth
↓ is defined with use of

the heat absorbed from the reservoir in a cooling process
we preferred temperature to time in writing Eq.~10!. It is
noted that if atT5Th the system relaxes to an equilibriu
state rapidly due to strong thermal fluctuations,Sst(Th) on
the right-hand side of Eq.~10! is the entropy of an equilib-
rium state and may be equal toSth(Th). Similarly by heating
the system fromTl to Th , we have

Sst~Tl !<Sst~Th!2E
Tl

Th
dQ/T~ t ![Sth

↑ ~Tl !. ~11!

Combining Eqs.~10! and ~11! we are led to the desired in
equality

Sth
↓ ~Tl !<Sst~Tl !<Sth

↑ ~Tl !. ~12!

The physical situation expressed by Eq.~12! is nicely repre-
sented by Fig. 1 of Ref.@5~a!#. In passing we note that if we
generalize the Langevin dynamics by including momentp
5dx/dt, we only need to modify Eq.~5! as E(t)5^V
1(p2/2)& to arrive at Eq.~8!. This is intuitively understood
as follows: By including momentum variablesp ~with mass
m51! we havedx/dt5p, dp/dt52gp2“V1f whereg is
the friction constant. The work done on the system by
reservoir is expressed as (2gp1f)•dx5(dp/dt1“V)•dx
5d(p2/21V). In the largeg limit we setdp/dt50, which is
equivalent to Eq.~1! for g51, to havedQ5d^V&5dE.

The second interpretation of Eq.~8! is for the case of
constant temperatureT(t)5T0 . Defining the free energy by
F(t)[E(t)2T0Sst(t) we notice from Eq.~8! that it de-
creases monotonically in time,

dF~ t !/dt<0, ~13!

until the equilibrium state, represented bypeq(x)
}exp@2V(x)/T0# is realized. Of course this distributio
function should be normalizable if it is to be useful. Thus w
cannot use it for the problem in which a constant field
exerted on a system and some stationary transport proce
prevailing ~see Sec. III!. For completeness we consider st
chastic processes governed by a master equation and d
an inequality similar to Eq.~8! in the Appendix.

III. MASS TRANSPORT IN A PERIODIC POTENTIAL

In this section we consider one-dimensional Brown
motion on a unit circle described by the Langevin equati

du/dt52dVp~u!/du1Fex1 f ~ t !, ~14!

where the random forcef (t) satisfies the relation

^ f ~ t ! f ~ t8!&52T0d~ t2t8!. ~15!
is

nd

a

s is

rive

The potentialVp(u) is periodicVp(u)5Vp(u12p) andFex

denotes the constant external force. The Fokker-Planck e
tion corresponding to Eq.~14! reads

]p~u,t !/]t52~]/]u!@~Fex2dVp /du!p2T0~]/]u!p#

[2~]/]u!J~u,t !. ~16!

The stationary state~SS! with a constant flowJSS is obtained
by solving the equation (Fex2dV/du)pSS2T0(d/du)pSS
5JSS to be

pSS~u!5G~u!S ~2Jss/T0!E
0

u

du8/G~u8!1CD , ~17!

where G(u)[exp*0
udu8@Fex2dVp(u8)/du8#/T0 . Two un-

known constants,C and JSS, are determined from the nor
malization *0

2pdu pSS51 and the periodicity pSS(0)
5pSS(2p) to obtain

JSS/T052S G~2p!E
0

2p

duG~u!/@12G~2p!#

3E
0

2p

du/G~u!1E
0

2p

duG~u!E
0

u

du8/G~u8! D 21

.

We takeVp(u)5@11cos(2u)#/2 and T050.5. In Fig. 1 is
plottedpSS(u) for some values of the external forceFex to-
gether with the equilibrium state„}exp@2Vp(u)/T0#… for Fex

50. It is observed that the nonequilibrium SS distributi
becomes less sharp asFex becomes larger. The SS curre
JSS turns out to be a simple increasing function ofFex as
expected.

Next we consider how our system approaches the stat
ary statepSS(u). First we note that the potentialV in Eq. ~5!,
which takes the formV5Vp(u)2Fexu, is not periodic inu
and we must consideru in the extended range2`,u,`
when we calculate the energyE(t)5^V&. However, reflect-
ing the fact that we used partial integration to derive Eq.~8!,
it contains only“V and the argumentu of p(u,t) in Eq. ~8!
is restricted to the range 0<u,2p. Thus it holds that

dF~ t !/dt5dE~ t !/dt2T0dSst~ t !/dt→22pJSSF
ex

~ t→`!. ~18!

SinceSst(t) goes to a constant2*dupSSlnpSS as t→`, we
see from Eq.~18! that the energy goes to2` due to circular
motion of the Brownian particle in the direction ofFex.

In terms of the thermal entropydSth(t)5dE(t)/T0 , this
fact is expressed as

s[2dSth~ t !/dt→2pJSSF
ex/T0 ~ t→`!, ~19!

where s denotes the entropy production~rate!, since the
Brownian particle gives energy 2pJSSF

ex per unit time to
the reservoir with temperatureT0 .

In order to calculates and dF(t)/dt one must obtain
p(u;t) by solving the Smoluchowski equation~16! numeri-
cally. For this purpose we employ an implicit scheme, wh
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FIG. 1. Stationary distributionpSS(u) for Fex50 ~equilibrium! ~denoted by a dashed line with1!, 0.5 ~denoted by a solid line!, and 1.0
~denoted byL! for T050.5.
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we require to conserve the probability to at least 1023. It
turns out that this conservation condition is achieved so l
as the constantT0Dt/Du2 is made smaller than 0.1 whereDt
andDu are the time and space increments in our differe
sheme@9#. In Fig. 2 we depictT0s and2dF(t)/dt for Fex

50.5, where the initial conditionp(u;t50) is taken to be
uniform on 0<u,2p. The rates is seen to decrease mon
tonically and achieves the SS of minimum entropy prod
tion.

IV. BROWNIAN MOTION IN A DOUBLE-WELL
POTENTIAL

As an application of the formalism developed in Sec.
we next consider Langevin dynamics in a one-dimensio
double-well potential
ng

ce

-
c-

I,
al

V~x!5 H x2~x22!2 ~x,1!

x2~x22!210.6~x21!3 ~x>1!
, ~20!

which is shown in Fig. 3.
Here our interest is centered around the nonequilibriu

distribution p(x;t) and two kinds of entropiesSth(t) and
Sst(t) associated with time variation of temperatureT(t) in
Eq. ~3!. We consider the following experiment: The syste
is kept in equilibrium at temperatureT0(51) for t,0, thus
p(x,t,0)}exp@2V(x)/T0#. In the cooling process 0,t
,tM , T(t) is chosen to be a stepwise function, whic
changes bydT(50.01) at timet i ( i 51,2, . . . ,M21) with
t150, T(t i,t<t i 11)5T02 idT. The time t i is determined
from the relationf (t i 11)5T02 idT with f (t) given by

f ~ t !5T0 /@11rt #. ~21!
FIG. 2. T0s(t) ~denoted byL! and2dF(t)/dt ~denoted by a solid line! for Fex50.5.
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FIG. 3. Double-well potential Eq.~20!.
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Ther in Eq. ~21! controls the cooling~or heating! rate. In the
heating processtM,t,` we proceed precisely in the re
versed way coming back toT0 at time t52tM . For t.2tM
the system is kept atT5T0 , relaxing to an equilibrium state
in which it was at timet,0. The Smoluchowski equation~3!
with the potential Eq.~20! is solved numerically with a simi-
lar difference sheme as used in Sec. III.

In Fig. 4 we depictp(x,t i) with i 51 and 2M for the case
M591 and the rater 50.5. Both distribution functions cor
respond to temperatureT5T0 , with p(x;t1) representing the
equilibrium one and the difference shows the nonequilibri
effects. In the cooling process (0,t,tM) the weight around
the first ~second! peakx.0 (x.1.7) increases~decreases!
and in the heating process (tM,t,t2M) the distribution
tends to recover its original shape. However, since the
tem is out of equilibrium due to the finite rater , the recovery
is not enough and we observe more~less! weight around the
s-

first ~second! peak in the nonequilibrium distribution
p(x:t2M). Of course this tendency becomes weaker asr be-
comes small and almost indiscernible forr 50.01 in the scale
of this figure.

In Fig. 5 we showSth
↑ (TM), Sth

↓ (TM), and Sst(TM) for
TM5T020.05I @ I 51,2, . . . ,18#. For calculation of these
three entropies for eachTM , we consider the temperatur
loop T0→TM→T0 mentioned before. The inequality~12! is
clearly confirmed from Fig. 5. We note that in the heati
process the contribution toSth

↑ (TM) from the heat absorbed
by the system during equilibration process`.t.t2M should
be included. The thermal entropy as depicted in Fig. 5 m
be called an average thermal entropy because there are m
thermal processes corresponding to each realization of
random processesf (t) in Eq. ~1! andSth is an average ove
these realizations. In Sec. V fluctuations of thermal entro
are formulated.
FIG. 4. Equilibrium and nonequilibrium distributions,p(x;t1) ~denoted by a solid line! andp(x;t2M) ~denoted byL! for M591.
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FIG. 5. Sth
↑ (TM) ~denoted by a dotted line!, Sth

↓ (TM) ~denoted by a line withL!, andSst(TM) ~denoted by a line with1! for TM5T0

20.05I @ I 51,2, . . . ,18#.
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Here we note that temporal variation of temperatureT(t)
was recently discussed by Reimannet al. @10# in relation to
directed Brownian motion, based on the one-dimensio
version of Eqs.~1! and~2!. Two differences from our mode
in this section are firstT(t) is cyclic with afinite period and
secondly the periodic potentialV(x) has broken symmetry
~ratchet@3,4#! in Ref. @10#. Although the general inequality
~8!, the main result in this paper, has no direct relevance
directed diffusion, our numerical approach based on
Smoluchowski equation as developed in Secs. III and IV
expected to yield useful information not only on stationa
particle current but also on transient behaviors before es
lishing the stationary current.

V. SOME REMARKS

In this paper we derive an inequality Eq.~8!, based on
which two types of Brownian motion are studied@11#. One is
related to a nonequilibrium stationary state, especially an
tropy productions[2dSth /dt associated with mass tran
port in an external field. The other is the entropy of noneq
librium states, which are produced by cooling or heat
processes.

One of the motivations for our study of the stationa
state ~Sec. III! is to contrast thestochasticreservoir used
here with the reversible ormechanicalreservoir of the Nose-
Hoover or Gauss type@12#, because the nonequilibrium sta
tionary states produced by these reservoirs gather cons
able interest@7,8#. We take a particle in a periodic potenti
Vp(q) in contact with the Nose-Hoover reservoir@7#. The
system is expressed by

dq/dt5p, ~22!

dp/dt52dVp~q!/dq2hp1Fex, ~23!

dh/dt5~p2/T021!, ~24!

whereh denotes a friction coefficient.Vp(q), T0 , andFex

have the same meaning as in Eq.~14!. Holian, Posch, and
al

to
e
s

b-

n-

i-
g

er-

Hoover numerically studied the system Eqs.~22!–~24! and
their results are summarized as follows@7#.

~a! The external forceFex produces mass currentp̄(.0)
where the bar means time average.

~b! The expansion rate of phase spaceL[]q̇/]q
1] ṗ/]p1]ḣ/]h52h takes negative value on average
L̄52h̄,0, meaning that the support of the distributio
function p(p,q,h;t) shrinks in time and it reduces to a frac
tal set in the limitt→`. From the definition~4! and Eqs.
~22!–~24!,

dSst~ t !/dt52E dp dq dh p~p,q,h,t !h[2^h&.

~25!

From the above the statistical entropy behaves asSst(t);
2h̄t as t→`.

~c! The heat transferred to the system (p,q) from the
reservoir is expressed as2hp dq @see the lines just below
Eq. ~12!#, which is rewritten asd@p2/21Vp(q)2Fexq#, thus
leading to our resultdQ5dE derived in Sec. II. If we take
time average of T0dSth /dt5dQ/dt5dE/dt, we have
T0dSth /dt→2Fexp̄ @cf. Eq. ~19!#. This was numerically
found to be equal to2h̄T0 .

As for the thermal entropySth(t) the stochastic and me
chanical reservoirs give the same asymptotic behavior
t→`. However, for the statistical entropy, we haveSst(t)
;2h̄t as t→` for the mechanical reservoir an
dSst(t)/dt→0 ast→` for the stochastic reservoir. The mo
subtle point about the mechanical reservoir is that the t
averageh̄ becomes positive and at the moment we do
know where this result comes from. Intuitively this ma
come from the fact that the stochastic reservoir may be
garded as a system with infinitely many degrees of freed
while the mechanical one consists of at most a few degr
of freedom. However, it must be noted thatp defined by Eq.
~22! should be expressed asp̄1dp for larget anddp should
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be related to temperatureT0 in Eq. ~24!. This point is also
important for the Gauss reservoir@8# and is currently under
study.

Thermal entropy defined in Sec. II is an average over
ensemble of many sample trajectories and its fluctuations
give useful information on relaxational properties, especia
when the temperature of the systemT(t) is controlled as
discussed in Ref.@5# for the case of the~discrete! two-level
system. We now formulate entropy fluctuations based on
Fokker-Planck equation for the model of continuous va
ablesx. First we rewrite Eq.~1! as

dx~ t !52“V~x!dt1A2T~ t !dW, ~26!

whereW(t)5„W1(t),...,Wn(t)… denotes then-dimensional
Wiener process@13#, which satisfies

^Wi~ t !&50 and ^dWi~ t !dWj~ t !&5dtd i , j . ~27!

The heat absorbed from the reservoirdQ(t)[V(x1dx)
2V(x) @14# is calculated from Eq.~26! as

dQ~ t !5@2~“V!21T~ t !¹2V#dt1A2T~ t !“V•dW,
~28!

where“V•W is interpreted as an Ito-type stochastic integ
@13#. From the definitiondSth5dQ/T(t) @14# and taking into
account the relations^(dSth)

2&/dt52(“V)2/T(t) and
^dx dSth&/dt52“V, we have the Fokker-Planck equatio
for the distribution functionp(x,Sth ;t),

]p/]t5“•@p“V#2A]p/]Sth1T¹2p12“•]~p“V!/]Sth

1@~“V!2/T#]2p/]Sth
2 , ~29!

whereA5A(x;t)[¹2V2(“V)2/T(t). It is noted that inte-
gration of Eq.~29! overSth yields Eq.~3! as it should. If we
solve Eq.~29! under the initial condition

p~x,Sth ;t50!5d~x2x0!d~Sth2S0!, ~30!

p(Sth ;t)5*dx p(x,Sth ;t) gives us the~thermodynamic! en-
tropy distribution at timet due to noise and temperatu
variationT(t).

A stationary solution to Eq.~29! for the caseT(t)5T0
can be found if one notes that the distribution ofx
approaches peq(x)}exp@2V(x)/T0# and Sth5@V(x)
ch
.

ys
n
an
y

e
-

l

2V(x0)#/T01S0 . It is easily confirmed thatpeq
1 (x,Sth)

[peq(x)d$Sth2@V(x)2V(x0)#/T02S0% gives one station-
ary solution to Eq.~29!. More generally, introducing a dis
tribution p(S0) for the initial entropy value, peq

2

[*dS0peq
1 p(S0)5peq(x)p$Sth2@V(x)2V(x0)#/T0% also

gives a stationary solution to Eq.~29!. These arguments give
partial support to the validity of Eq.~29!. Numerical studies
on Eq.~29! for a time-dependent temperature are in progr
and will be reported elsewhere.

APPENDIX: ENTROPY IN MASTER EQUATION
DYNAMICS

We consider the master equation for the probability d
sity p(x;t),

]p~x;t !/]t5E dy@W~y→x!p~y;t !2W~x→y!p~x;t !#

[E dy@A2B#, ~A1!

where we assume the detailed balance relation

W~x→y!/W~y→x!5exp$@V~x!2V~y!#/T~ t !%. ~A2!

With use of definitions~4! and ~5!, we readily see that

d^V&~ t !/dt2T~ t !dSst~ t !/dt

5E dxE dy@A2B#@V~x!1T~ t !ln p~x;t !#.

~A3!

By interchangingx andy in the integrand of Eq.~29! we see
that

d^V&~ t !/dt2T~ t !dSst~ t !/dt

5@T~ t !/2#E dxE dy@A2B# ln~B/A!<0.

~A4!

Following the same argument as before we see that the
tion ~12! also holds for the master equation dynamics. It go
without saying that the state variablex, which is dealt here as
continuous, can be discrete.
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